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The study of collisional test particle diffusion in stochastic magnetic fields is extended to include the effects
of the macroscopic flows of the plasma~drifts!. We show that a substantial amplification of the diffusion
coefficient can be obtained. This effect is produced by the combined action of the parallel collisional velocity
and of the average drifts. The perpendicular collisional velocity influences the effective diffusion only in the
limit of small average drifts.@S1063-651X~96!01807-7#
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I. INTRODUCTION

The problem of collisional particle diffusion in stochastic
magnetic fields, although not entirely solved, seems to be
better understood at this moment. The early results of Re-
chester and Rosenbluth@1# and Kadomtsev and Pogutse@2#
are now confirmed by more elaborated studies@3–12# and by
numerical calculations@13#. The general result is that the
stochastization of the magnetic lines could provide a possible
explanation for the anomalous transport in magnetically con-
fined plasmas. In this context we present here a study of the
effects of the plasma flows on the transport coefficients.
Such flows appear as deterministic drifts superposed on the
stochastic velocity which determines collisional particle mo-
tion in a stochastic magnetic field. They can be produced by
an electric field perpendicular to the confining magnetic
field, by a current along it, by fast neutral beam injection,
etc. Such macroscopic plasma flows are commonly found in
experiments. We have obtained a nontrivial dependence of
the effective particle diffusion coefficient on the determinis-
tic drift velocity: first there is a strong increase of the diffu-
sion which is followed, at higher values of the drift velocity,
by a reversed effect, the increase of the drift leading to the
decay of the diffusion. This happens for drift velocities both
perpendicular and parallel to the main magnetic field, but in
the case of a parallel drift the effect is superposed on the
diffusion determined by the average motion along magnetic
field lines~which is linear in the velocity!. The effect of the
deterministic drifts is important in all diffusion regimes. We
have shown that the collisional cross field diffusivityx' has
a significant influence on the effective diffusion coefficient
only in the limit of small drift velocities; at higher values of
these velocities, the diffusion coefficient is practically inde-
pendent ofx' .

This problem of average drifts was not much analyzed in
the literature. It was probably expected that the deterministic
drifts determine, as in several related problems, a decrease of

the diffusion coefficient so that they do not contribute to
explaining the anomalous transport. To our knowledge, there
are only the papers by Mynick and Krommes@14#, by Myra
and co-workers@15,16#, by Coronado, Vitela, and Akcasu
@17#, and recently by Isichenko and Diamond@18# which
deal with this problem but only in the case of noncollisional
particles~e.g., runaway electrons!. All these results show an
attenuation of the diffusion due to deterministic drifts. Such
behavior appears when the Lagrangian two point correlation
of the stochastic velocity is a positive function at all times.
We show here that in the doubly stochastic process, which
determines the evolution of the collisional particles in the
stochastic magnetic field, the effect of the deterministic drifts
is more complex, precisely due to the fact that the Lagrang-
ian correlation function of the stochastic velocity has a nega-
tive tail. It determines an increase of the diffusion coefficient
with the drift velocity up to a maximum value which can be
much larger than the driftless one. A similar peaking of the
particle diffusion coefficient was also obtained in Ref.@19#
from a qualitative analysis of the transport processes in the
ergodic divertors of tokamak devices.

The present work belongs to a series of papers@7,10–
12,20# which is devoted to various aspects of the magnetic
turbulence. We use here the methods and some of the results
obtained in our previous paper@7#.

The text is organized as follows. The model is presented
in Sec. II. It is a test particle approach based on Langevin-
type equations. The comparison with the kinetic approach
has been discussed in Ref.@10#. The diffusion coefficient as
a function of the drift velocities is determined in Sec. III for
a zero cross field collisional diffusivity. Next, in Sec. IV, the
influence of the cross field collisional diffusivity is esti-
mated. The conclusions are summarized in Sec. V.

II. THE MODEL

We consider the simplest geometry of the unperturbed
magnetic configuration consisting of a constant confining
magnetic fieldB0 ~shearless slab model!. The particle trajec-
tories~in the Cartesian coordinates with thez axis alongB0!,
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x(t)[„x(t),y(t),z(t)… are described by the following set of
Langevin equations:

dx'

dt
5b~x!

dz

dt
1h'~ t !1u' , ~2.1!

dz

dt
5h i~ t !1ui , ~2.2!

wherex'(t)[„x(t),y(t)…, b5„bx ~x!,by~x!… is the stochastic
perturbation of the magnetic field adimensionalized withB0,
hi(t), h'(t) are the components of the stochastic collisional
velocity parallel and, respectively, perpendicular toB0 and
ui , and u'[~0,u'! are deterministic~average! components
of particle velocity~they axis was taken for simplicity along
the velocityu'!. Such deterministic motion can be produced,
e.g., by a current alongB0 or, respectively, by an electric
field in thex axis direction~a radial electric field in tokamak
plasmas!. The magnetic drifts specific to tokamak configura-
tions ~which cannot be introduced in this model! have been
extensively studied in Refs.@14–16#.

Concerning the statistical properties of the random quan-
tities we make the following reasonable assumptions. The
collisional velocity has zero average and is modeled by
Gaussian colored noise with the two time correlation func-
tion having different amplitudes in the parallel and perpen-
dicular directions:

^h i~ t !h i~ t8!&5x in exp~2nut2t8u![Ri~ ut2t8u!, ~2.3!

^h'
x ~ t !h'

x ~ t8!&5^h'
y ~ t !h'

y ~ t8!&5x'n exp~2nut2t8u!

[R'~ ut2t8u!, ~2.4!

^h'
x ~ t !h'

y ~ t8!&5^h i~ t !h'
x ~ t8!&5^h i~ t !h'

y ~ t8!&50,
~2.5!

wheren is the collision frequency of the plasma,xi5VT
2/~2n!

is the ~classical! parallel diffusion coefficient,
x'5(VT

2n)/~2V2! is the collisional cross field diffusion co-
efficient, andVT is the thermal velocity.

For describing the stochastic magnetic field we introduce
the vector potentialC~x!ez in order to have the zero diver-
gence condition ensured.C~x! is taken as a Gaussian random
field, spatially homogeneous and isotropic in the (x,y) plane
with an Eulerian autocorrelation function modeled by

A~r ![^C~x1r !C~x!&5b2l'
2 expS 2

r z
2

2l i
22

r'
2

2l'
2 D .

~2.6!

Here, three characteristic parameters are defined: the parallel
correlation lengthli , the perpendicular correlation length
l' , and the dimensionless measure of the intensity of the
stochastic magnetic fieldb. r z andr'[(r x ,r y) are the com-
ponents of the distancer between the two points. The Eule-
rian autocorrelation function of the potentialC~x! deter-
mines the Eulerian correlations for the magnetic field
components@7#:

Bi j ~r ![^bi~x1r !bj~x!&5
A~r !

l'
2 Fd i j2

r'
2d i j2r i r j

l'
2 G .

~2.7!

The correlation functions correspond in the Fourier repre-
sentation to the wave number spectrum of the fluctuations of
the magnetic field components and Eq.~2.7! is equivalent
with the following model for the latter~see Ref.@7#!:

^bi~k!bj~k!&5~k'
2d i j2kikj !A~k!, ~2.8!

A~k!5~2p!23/2l il'
4b2exp~2 1

2l i
2ki

22 1
2l'

2k'
2 !, ~2.9!

wherek'5Akx21ky
2, ki5kz , andA~k! is the spectrum of the

fluctuating potentialC~x!. The factor contained in the paren-
theses on the right-hand side of Eq.~2.8! accounts for the
zero divergence of the stochastic magnetic field.

Even in the absence of the deterministic drifts the prob-
lem of collisional particle evolution in a stochastic magnetic
field is very complicated and it was not possible to find until
now a simple and complete solution. We develop here a
simplified model which is valid for magnetic perturbations
such thata[b~li/l'!!1 ~quasilinear limit!. In dealing with
this model, we first neglect the perpendicular collisional sto-
chastic velocity in Eq.~2.1! @h'(t)50# and show that the
problem can be solved in these conditions. The diffusion
coefficient is obtained as a function of the drift velocitiesu' ,
ui ~Sec. III!. Although the perpendicular collisional stochas-
tic velocityh'(t) entails a strong mathematical complication
of the problem which prevents the use of the method pre-
sented before, it is possible to make an approximate evalua-
tion of the effect of the perpendicular collisional diffusivity
on the effective diffusion coefficient. It is based on the cal-
culation of the time of decorrelation induced by collisions
~Sec. IV!.

III. DRIFT INDUCED DIFFUSION COEFFICIENT

Equations~2.1! and~2.2! determine the particle trajectory
x'(t) which is actually a function of two variables:
x'(t)5x'„z(t),t…, where the dependence onz results from
the first term on the right-hand side of Eq.~2.1!, the explicit
dependence on time from the last two terms, andz(t) is the
solution of Eq.~2.2!.

We consider in this sectionh'(t)50 in Eq. ~2.1!. Conse-
quently, the explicit dependence on time in the equation of
motion is deterministic. We show here that this particular
problem can be solved in the quasilinear limit characterized
by a[b~li/l'!!1. The method is similar to that developed
for the driftless case in our previous work@7#.

The mean square displacement of the trajectories in the
direction i , averaged over the fluctuating magnetic field in a
given realization of the stochastic velocityhi(t), is calcu-
lated as

^@x'~ t !2x'~0!2u't# i
2&b

5E
0

tE dt1dt2Li i
u'
„z~ t1!2z~ t2!,t12t2…

dz

dt1

dz

dt2
, ~3.1!

where z(t) is considered as a given function of time,^ &b
denotes the statistical average over the stochastic parameter
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specified by the subscript, andLi j
u' is the two point Lagrang-

ian correlation ofbi ,bj along particle trajectories. It is re-
lated to the corresponding Eulerian correlationBi j in the
well-known Corrsin approximation@21# ~valid in the quasi-
linear limit a!1!:

Li j
u'~z,t ![^bi„x'~z,t !,z…bj~0,0!&b

5E
2`

` E dx dy Bi j ~x,y,z!g~x,y;z,t !. ~3.2!

Here,g(x,y;z,t) is the probability density for a displacement
x,y of the trajectories which advance a distancez in a time
interval t @z5z(t)#. This probability is estimated as the av-
erage over the stochastic magnetic field of the Diracd func-
tion ~see Ref.@7#!:

g~x,y;z,t !5^d„x2x~z,t !…d„y2y~z,t !…&b . ~3.3!

Using the Fourier representation of thed functions and per-
forming the average of the resulting exponential by means of
the cumulant method~second cumulant!, one obtains

g~x,y;z,t !

5
1

2p

1

Aq
expF2

x2I yy1~y2u't !
2I xx22x~y2u't !I xy
q G ,

~3.4!

where I i j (z,t)5^@x'(t)2x'~0!2u't#i@x'(t)2x'~0!2u't#j &b
and q(z,t)5I xxI yy2I xy

2 . The functionsI i j depend on the
Lagrangian correlationsLi j

u' according to Eq.~3.1! ~and to
the similar equations for the other components of the trajec-
tory!. Corrsin approximation~3.2! and the Eulerian correla-
tions ~2.7! determine a rather complicated set of coupled
nonlinear integral equations forLi j

u'(z,t). The equation for

Lxy
u' is homogeneous and asLxy

u'(0,0)5Bxy(0,0,0)50, its so-
lution shows that the cross correlation remains zero,
Lxy
u'(z,t)50. The other two equations become

Lxx
u'~z,t !5b2expS 2

z2

2l i
2D l'

4 ~Jy2u'
2 t2!

Jx
1/2Jy

5/2 expF2
u'
2 t2

2Jy
G ,
~3.5!

Lyy
u'~z,t !5b2expS 2

z2

2l i
2D l'

4

Jx
3/2Jy

1/2 expF2
u'
2 t2

2Jy
G , ~3.6!

whereJi[l'
21I i i , i5x,y.

We note that the perpendicular drift motion alongy has
two important consequences. It destroys the gyrotropic prop-
erty of the problem leading to a dissymmetry betweenx and
y directions. Consequently, the Lagrangian correlations lose
the symmetry property found in Ref.@7# and the diffusion
coefficient becomes a~diagonal! tensorial quantity. On the
other hand, whenu'Þ0 it is not possible to perform the
change of variablestn→jn5z(tn), n51,2 in the integrals in
Eq. ~3.1! and thusI i i are not only functions ofz5z(t) and t
but they depend on the whole trajectoryz(t1), t1P[0,t]. Due
to this fact, Eqs.~3.5! and~3.6! are much more complicated
than their driftless limit@Eq. ~30! in Ref. @7##. However, for

a!1 ~quasilinear limit!, the nonlinearity consisting in the
dependence ofJi on the unknown functionsLi i

u' can be ne-
glected~as shown in Ref.@7#! and Eqs.~3.5! and~3.6! reduce
to simple approximate expressions for the Lagrangian corre-
lations of the magnetic field components:

Lxx
u'~z,t !5b2expS 2

z2

2l i
2D expF2

u'
2 t2

2l'
2 GF12

u'
2 t2

l'
2 G ,

~3.7!

Lyy
u'~z,t !5b2expS 2

z2

2l i
2D expF2

u'
2 t2

2l'
2 G . ~3.8!

In these conditions, the average over the second random
parameter, the collisional parallel velocityhi(t) can be easily
performed. The mean square displacement averaged over the
two stochastic functions becomes

G i~ t ![^@x'~ t !2x'~0!2u't# i
2&bi

5E
0

tE dt1dt2Lv i~ t12t2 ;ui ,u'!, ~3.9!

whereLv i(t;ui ,u') is the Lagrangian two point correlation
of v i[bi~dz/dt!, the perpendicular velocity determined by
particle motion alongperturbedmagnetic lines:

Lv i~ t12t2 ;ui ,u'!

[ KLi iu'
„z~ t1!2z~ t2!,t12t2…

dz

dt1

dz

dt2
L

i

. ~3.10!

These correlations can be calculated by performing a Fourier
expansion ofLi i

u' in thez argument, which leads to an aver-
age of the type

K exp$2 ik@z~ t1!2z~ t2!#%
dz

dt1

dz

dt2
L

i

5
1

k2
]

]t1

]

]t2
^exp$2 ik@z~ t1!2z~ t2!#%& i , ~3.11!

where the average on the right-hand side is determined using
the cumulant theorem~second cumulant!. After integration
over the Fourier conjugate argument, one gets

Lv i~t;ui ,u'!5
1

A2p^^z2~t!&&
E

2`

`

dz Li i
u'~z,t!

3expS 2
~z2uit!2

2^^z2~t!&& D FRi~t!2
w2~t!

^^z2~t!&&

1S ui1
w~t!~z2uit!

^^z2~t!&& D 2G . ~3.12!

Here,^^z2~t!&& is the second cumulant ofz(t), the solution of
Eq. ~2.2!:

^^z2~t!&&5
2c~nt!x i

n
, ~3.13!
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where c(x)5x211exp(2uxu) and w~t!51
2d^^z2(t)&&/dt

5xi@12exp~2nt!#.
Equation~3.12! shows that the stochastic parallel velocity

hi(t) has a very strong effect: the shape of the Lagrangian
correlation of the productv i5bi(dz/dt) is completely dif-
ferent from that of the correlation of each factor~Li i

u' and,
respectively,Ri!. At the limit hi ,xi→0 ~i.e., dz/dt5ui! the
correlation ofv i is simplyLi i

u'(uit,t)ui
2 and has the bell-like

shape ofLi i
u'. The parallel collisional velocityhi transforms

it into a more complicated function having a negative tail.
When the motion is purely stochastic~ui50 andu'50!, the
positive and the negative parts ofLv

0(t)[Lv i(t;ui50, u'

50) have equal areas so that the diffusion coefficient is zero
@D05*0

`dt Lv i
0 (t)50# and the mean square displacement

G(t) has a subdiffusive behavior. The subdiffusive behavior
of G(t) is thus due to collisions. They produce a random
motion of the particles along magnetic lines which determine
a nonzero probability density for the presence of the particles
at any time moment in the correlated zone of the stochastic
magnetic field. If a deterministic component of the motion
exists~uiÞ0 or u'Þ0!, the particles move out of the corre-
lated zone~they decorrelate from the magnetic lines! and
G(t) becomes diffusive. In mathematical terms, this process
results in the fact that the deterministic drifts destroy the
‘‘equilibrium’’ between the positive and negative parts of the
Lagrangian correlationL v

0(t) transforming it into a function
with a positive time integral.

With the approximations~3.7! and ~3.8! for Li i
u', Eq.

~3.12! yields

Lvy~ t;ui ,u'!5
b2l i

l i
FRi2

w2

l i
2 1ui

2S 11
wt

l i
2 D 2G

3expF2
ui
2t2

2l i
2 2

u'
2 t2

2l'
2 G , ~3.14!

Lvx~ t;ui ,u'!5Lvy~ t;ui ,u'!F12
u'
2 t2

l'
2 G , ~3.15!

where l i
25l i

21^^z2&&. This equation shows that bothu'

and ui introduce additional time factors which strongly

modify the basic correlationL v
0(t) whose ‘‘equilibrium’’ is

completely destroyed. We note that the deterministic drifts
have a strong effect: they determine a Gaussian decay of the
correlation and also some factors which modify its shape,u'

producing even the change of its sign. Consequently, the
diffusion coefficients defined as

Di~ui ,u'!5E
0

`

dt Lv i~ t;ui ,u'! ~3.16!

are rather complicated functions of the drift velocities.
Equations~3.14! and ~3.15! show that the correlations

Lv i and consequently the diffusion coefficientsDx andDy

depend on three dimensionless parameters:ū'[u'/~l'n!,
ū i[ui/~lin!, andg[2xi/~li

2n!5~lmfp/li!
2. The first two pa-

rameters describe the influence of the deterministic drifts
whose effect appears to be dependent on the characteristics
of the two stochastic processes~collision frequency and, re-
spectively, correlation lengths of the stochastic magnetic
field!. The third parameterg describes the influence of the
collisions.

The effects of the deterministic drifts on particle diffusion
in a stochastic magnetic field are presented in Figs. 1–4
which show that both parallel and perpendicular determinis-
tic drifts produce first the transition from the subdiffusive
~D50! to a diffusive regime and then a strong increase of the
diffusion followed by a slower decay. The amplification of

FIG. 1. The diffusion coefficientsDx and Dy resulting from
Eqs.~3.14!–~3.16!, as functions ofū' for ūi50. The normalization
constant isb2xi andg52.

FIG. 2. The diffusion coefficient resulting from Eqs.~3.14!–
~3.16! for ū'50 and for several values of the parameter
g[~lmfp/li!

2. The normalization constant isb2li
2n.

FIG. 3. The diffusion coefficientDx ~normalized withb2li
2n!

for ūi50 and for several values of the parameterg.
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the diffusion is a complex effect determined by the combi-
nation of the two stochastic processes~b andhi! involved in
particle evolution with the deterministic drifts. Figure 1 pre-
sents the dependence of the diffusion coefficient obtained
from Eqs.~3.14!–~3.16! on u' ~for ui50!. One can note that
the perpendicular drift produces a stronger influence in the
‘‘radial’’ direction: Dx has a faster variation withu' than
Dy .

At u'50, the diffusion is the same in the two directions
[Dx(ui,0)5Dy(ui,0)[D(ui)]. The effect ofui is qualita-
tively similar to that ofu' but it is superposed on the linear
contribution which represents the diffusion in the absence of
collisions~see Fig. 2!. In the conditions of the tokamak plas-
mas, the parallel drift velocities are much smaller than the
thermal velocities,ui!VT , i.e., ūi!Ag and thus the interest-
ing range forūi is well before the maximum ofD(ui). The
diffusion coefficient can be estimated analytically in this
limit as

D~ui,0!>5Dmui for ūi!Ag, ~3.17!

where Dm5Ap/2b2l i is the diffusion coefficient of the
magnetic lines. The diffusion is thus practically independent
of g and it is five times greater than the collisionless one
@which is Dnc(ui)5Dmui , as will be checked below, Eq.
~3.21!#. Figure 2 also illustrates the influence of the colli-
sional parallel diffusivityxi ~represented by the parameterg!
on the effective diffusion coefficient: forg50, the well-
known collisionless limitDnc is recovered and, asg in-
creases, the nonlinear contribution determined by the com-
bined effect ofhi andui becomes more and more important.

The stochastic collisional velocityhi has a similar effect
when ui50 and u'Þ0 ~see Fig. 3!: at g50 the diffusion
coefficient is zero~the collisionless limit in this case! for any
u' . It is only when bothhi andu' are different from zero
that a diffusion process appears and becomes stronger asg is
increasing. The diffusion coefficient can be estimated ana-
lytically from Eqs. ~3.14!–~3.16! in the limit of small per-
pendicular drifts:

Dy~0,u'!5DmS 1p x iu'

l'
D 1/25DmVTS ū'

2p D 1/2,
Dx~0,u'!51.5Dy~0,u'! for ū'!g. ~3.18!

Comparing Figs. 2 and 3 one can observe that a stronger
amplification of the diffusion coefficient can be produced
when the drift velocity is parallel to the main magnetic field.

The combined effect of the two drifts~uiÞ0 andu'Þ0! is
more complicated. For instance, the caseūi!Ag is illus-
trated in Fig. 4. One can see that at smallū' , ūi strongly
modifies the effective diffusion but at largeū' it is practi-
cally independent ofūi .

The Lagrangian correlation functions~3.14! and ~3.15!
represent the main result of this section. They determine the
mean square displacement of the particles at any time and
the running diffusion coefficient~not only their asymptotic,
diffusive limits!. Thus it is possible to study particle behav-
ior not only in large~infinite! size stochastic magnetic fields
where the asymptotic approximation applies but also in sto-
chastic fields with a smaller space extension. Actually, the
experimental configurations belong usually to the latter case
since the stochastic domains of the magnetic field appear
between undestroyed magnetic surfaces or chains of islands.
For such a domain having an extension alongx ~radial! axis
of lengthR, the time of particle confinementtc can be evalu-
ated from the equation

^x2~ tc!&bi5R2, ~3.19!

where^x2(t)&bi is calculated according to Eq.~3.9! using the
correlation function~3.15!. In the special case of edge plas-
mas, there is a supplementary possibility of particle losses
due to the fact that the stochastic magnetic lines are con-
nected to the wall. This process determines a second equa-
tion:

^z2~ tc!&5^^z2~ tc!&&1ui
2tc
25Z2~R!, ~3.20!

where the lengthZ(R) of the stochastic magnetic lines is
evaluated from the diffusion equation [2DmZ(R)5R2] and
^^z2(t)&& is given in Eq.~3.13!. The time of particle confine-
ment in the case of edge plasmas is the minimum of the
solutions of Eqs.~3.19! and~3.20!. The practical method for
such evaluations is to calculate^x2(t)&bi and^z2(t)& for the
actual parameters of the plasma and to determinetc graphi-
cally using the plot of these functions. Depending on the
specific parameters and on the sizeR of the stochastic zone,
various regimes are obtained: laminar or ergodic for the
magnetic field, free streaming or collisional for particles.
When the particles are very rapidly lost (tc!l i/ui ,l'/u'),
the effect of the drifts is negligible. But the opposite condi-
tion (tc>l i/ui ,l'/u') is possible in stochastic boundary
layers~especially for the ions! and the drifts can modify the
transport properties in this case also.

We finally note that for collisionless particles~hi50!
whose trajectories are determined by a single stochastic pro-
cessb, the effects of the deterministic drifts are different.
In this case, the Lagrangian correlations of the stochastic
velocity v i5biui @Eqs. ~3.14! and ~3.15!# reduce to
Li i
u'(z5uit,t)ui

2 and using Eq.~3.16! the following diffusion
coefficients are obtained:

FIG. 4. The diffusion coefficientDx in the presence of both
drifts: ūi50.2 ~long dashed line!, ūi50.1 ~dashed line!, and ūi50
~continuous line!.
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Dx
nc5

Dmui

F11S u'l i

uil'
D 2G3/2, Dy

nc5
Dmui

F11S u'l i

uil'
D 2G1/2.

~3.21!

They have a different dependence on the drift velocities: a
continuous increase withui and a continuous decrease with
u' .

IV. THE EFFECT OF THE COLLISIONAL
CROSS FIELD DIFFUSION

In the preceding section we have studied collisional par-
ticle diffusion in stochastic magnetic fields in the presence of
average drifts, neglecting the small perpendicular component
h'(t) of the stochastic velocity determined by collisions. We
evaluate here the influence ofh'(t) on the effective diffu-
sion coefficient. The problem cannot be solved using the
method of Sec. III since, even in the quasilinear limit, it is
not possible to expressLv i(t;ui ,u') ~the Lagrangian corre-
lation of the velocityvi5bih i on particle trajectories! as a
function ofLi i

u'(z,t) ~the Lagrangian correlation of the mag-
netic fluctuations on magnetic lines! as was done in Eq.
~3.12!. This difficult ~unsolved! problem can be avoided and
the effective diffusion coefficient can be estimated in the
quasilinear limit by using a method similar to that presented
in Ref. @7# for the driftless case. This is based on the calcu-
lation of the time of collision induced decorrelation of the
particles from the magnetic lines. To this aim we determine
the evolution of the momentŝDxiDxj&b'i , i , j5x,y where
Dxi5xi(t)2x i

0(t) represents the contribution due to the sto-
chastic collisional velocityh' @xi(t) is the trajectory for
h'Þ0 andx i

0(t) is the trajectory forh'50#. Straightforward
calculations similar to those presented in Sec. III of Ref.@7#
lead, in the quasilinear and Markovian approximation, to a
set of coupled linear equations for the moments averaged
overb andh' whose coefficients are of the type

E
0

t

dt Li jkl„z~ t !2z~t!,t2t…
dz

dt

dz

dt
, i , j ,k,l5x,y, ~4.1!

whereL i j
kl
„z(t)2z(t),t2t… is the Lagrangian correlation of

]kbi and ] lbj on particle trajectories with h'50
(]kbi[]bi /]xk). The fact that all the Lagrangian arguments
are the trajectoriesx0(t) allows us to estimate these correla-
tions as in the preceding section. The Eulerian correlations of
the gradients of the magnetic field can be deduced from Eq.
~2.7!. Then, using Corrsin factorization~3.2! one finds that
the table of the correlations simplifies considerably in the
Lagrangian frame: part of them are identically zero and the
others can be expressed in terms of three functions:

Lxxxx5Lyyyy52Lxyxy52Lyxxy5L1~z,t !, ~4.2!

Lxxxy5Lyxyy5Lyyxy5Lxyxx5Li j0l50, ~4.3!

Lyyxx5L2~z,t !, ~4.4!

Lxxyy5L3~z,t !, ~4.5!

where the index 0 in Eq.~4.3! indicates the correlation ofbi
with ] lbj . The functionsL1,L2,L3 are given by

L1~z,t !5b2expS 2
z2

2l i
2D l'

4 ~Jy2u'
2 t2!

Jx
3/2Jy

5/2 expS 2
u'
2 t2

2Jy
D ,
~4.6!

L2~z,t !53b2expS 2
z2

2l i
2D l'

4

Jx
5/2Jy

1/2 expS 2
u'
2 t2

2Jy
D ,

~4.7!

L3~z,t !5b2expS 2
z2

2l i
2D l'

4 ~3Jy
226u'

2 t2Jy1u'
4 t4!

Jx
1/2Jy

9/2

3expS 2
u'
2 t2

2Jy
D , ~4.8!

whereJi have the same definition as in Eqs.~3.5! and~3.6!.
In the quasilinear limit~a[bli/l'!1!, Ji'l'

2 and Eqs.
~4.6!–~4.8! reduce to much simpler expressions:

L1~z,t !>
b2

l'
2 expS 2

z2

2l i
22

u'
2 t2

2l'
2 D S 12

u'
2 t2

l'
2 D , ~4.9!

L2~z,t !>3
b2

l'
2 expS 2

z2

2l i
22

u'
2 t2

2l'
2 D , ~4.10!

L3~z,t !>3
b2

l'
2 expS 2

z2

2l i
22

u'
2 t2

2l'
2 D S 122

u'
2 t2

l'
2 1

u'
4 t4

3l'
4 D .
~4.11!

The set of equations for the moments becomes

d

dt
^Dx2&b'i52A1^Dx

2&b'i12A3^Dy
2&b'i12x'~ t !,

~4.12!

d

dt
^Dy2&b'i52A2^Dx

2&b'i12A1^Dy
2&b'i12x'~ t !,

~4.13!

d

dt
^DxDy&b'i524A1^DxDy&b'i , ~4.14!

whereAi(t)5* 0
t dt Li„z(t)2z(t),t2t…(dz/dt)(dz/dt) and

x'(t)5* 0
t dt R'(t). With the initial conditionDxi~0!50,

the solution of Eqs.~4.12!–~4.14! is

^Dx2~ t !&b'5F11SA3

A2
D 1/2G E

0

t

dt1x'~ t1!

3expF2E
t1

t

~A11AA2A3!duG , ~4.15!

^Dy2~ t !&b'5F11SA2

A3
D 1/2G E

0

t

dt1x'~ t1!

3expF2E
t1

t

~A11AA2A3!duG , ~4.16!
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^Dx~ t !Dy~ t !&b'i50, ~4.17!

where we have retained, for simplicity, only the fastest grow-
ing terms. This solution is valid for small time, so that
^Dx i

2(t)&b'i<l'
2 .

The relative trajectory dispersion@Eqs.~4.15! and~4.16!#
has still to be averaged over the stochastic collisional veloc-
ity hi . Due to the complicated dependence onhi and z(t)
appearing in Eqs.~4.15! and~4.16!, it is not possible to cal-
culate this average, except in the limit of small perpendicular
drift velocity u' where we can neglect the anisotropy intro-
duced byu' and approximateA2>A3>3A1 . In this case

^Dx2~ t !&b'>^Dy2~ t !&b'

>2E
0

t

dt1x'~ t1!expS 8E
t1

t

A1~u!du D . ~4.18!

With this approximation, the calculations follow the same
steps as in our previous study@20# concerning collision in-
duced decorrelation in a time-dependent stochastic magnetic
field. hi is contained only in the argument of the exponential
in Eq. ~4.18! and the average overhi can be calculated using
the cumulant method~second cumulant!. The first cumulant
is estimated as

C1~ui ,u' ;t,t1!5
8

l'
2 E

t1

t

duE
0

t1
du1Lvx~u2u1 ;ui ,u'!

>
8Dx

0~ui ,u'!

l'
2 ~ t2t1! ~4.19!

using Eqs.~4.9!, ~3.10!, ~3.15!, and the asymptotic~large
t,t1! approximation. Here,D x

0(ui ,u') is the drift induced
diffusion coefficient forh'50 ~determined in the preceding
section!. Long but straightforward calculations showed that
the drifts determine the decay of the second cumulant which
is smaller than the first except in the limitu'>0 andui>0
where it is dominant and can be approximated by

C2~ui50,u'50;t,t1!

>32~p22!b4
l i
2@^^z2~ t !&&2^^z2~ t1!&&#

l'
4 . ~4.20!

The average overhi of the exponential in Eq.~4.18! becomes

K expF8E
t1

t

duE
0

t1
du1Li„z~u!2z~u1!,u2u1…

dz

du

dz

du1
G L

i

>expF8al'
2 ~ t2t1!G , ~4.21!

wherea5D x
0(ui ,u')14~p22!b2a2xi . Finally, we have ob-

tained the following evaluation of the average overhi of Eq.
~4.18! ~see Ref.@20#!:

^Dx2~ t !&b'i>H 8ax'

l'
2 t2, KP regime

l'
2x'

4a
expS 8al'

2 t D , RR regime

~4.22!

where the first line was obtained forLKP[l'Ax i /x'!LK
which corresponds to the Kadomtsev-Pogutse collisional re-
gime and the second line forLKP@LK , i.e., for the
Rechester-Rosenbluth regime@LK[l'

2 /(4Ap/2b2l i) is the
exponentiation length of the magnetic lines#. A detailed clas-
sification of the collisional regimes of particle diffusion in
stochastic magnetic fields is presented in Ref.@11#.

The dispersion of the trajectories can be written as the
sum

^x2~ t !&b'i5^@x0~ t !#2&bi1^Dx2~ t !&b'i , ~4.23!

where the first term contains the effect of the drifts forh'50
and the second the influence of the collisional velocityh' .
This decomposition induces a similar relationship for the dif-
fusion coefficient:Di5D i

01D i
c whereD i

c is the contribu-
tion of the perpendicular collisional diffusivity. The diffu-
sion coefficient can be estimated asDi'l'

2 /(2td) where the
decorrelation timetd is determined from the equation

^@x0~ td!#
2&bi1^Dx2~ td!&b'i5l'

2 . ~4.24!

Straightforward analysis of this equation shows that for
small drifts the second term of Eq.~4.24! is dominant and the
decorrelation is produced mainly by collisions. The decorre-
lation time td is estimated from̂ Dx2(td)&b'i5l'

2 and the
random walk evaluation of the diffusion coefficient yields

Dc>H A2@4~p22!b2a2x i1D0#x'1D0, KP regime

4
4~p22!b2a2x i1D0

lnF4 4~p22!b2a2x i

x'
G 1D0, RR regime.

~4.25!

For such small driftsD0(ui ,u') is small and it represents in
Eq. ~4.25! a small correction to the driftless value which is
recovered atui5u'50 as the well-known Kadomtsev-
Pogutse or Rechester-Rosenbluth diffusion coefficient. Equa-
tion ~4.25! is valid for small drift velocities such that the first
term in Eq.~4.24! can be neglected, i.e., for 2D0td!l'

2 . This
condition reads

D0~ui ,u'!!D lim
0 5 H2x' , KP regime

4~p22!b2a2x i , RR regime.
~4.26!

It corresponds to perpendicular drift velocities:

ū'!ū'
lim5H 4S rL

bl i
D 4 1g , KP regime

16a4g, RR regime
~4.27!

or alternatively to parallel drift velocities:

ūi!ūi
lim5H 1

5 S rL
bl i

D 2, KP regime

2

5
a2g, RR regime.

~4.28!
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Equations~3.17! and~3.8! were used for the estimates~4.27!
and~4.28! and thus they are valid only ifū'

lim andū i
lim are in

the validity range for those estimates~ū'
lim!g and ū i

lim

!Ag).
At larger drift velocities whenD i

0@D lim
0 , the first term of

Eq. ~4.24! becomes dominant compared to the second one
and the influence of the perpendicular collisional diffusivity
x' on the effective diffusion coefficient is negligible. Conse-
quently, the effective diffusion coefficient can be approxi-
mated by the result obtained in the preceding section:

Di~u' ,ui!>Di
0~u' ,ui!. ~4.29!

In conclusion, we have shown that the perpendicular com-
ponent of the collisional stochastic velocityh' is important
only in the limit of small drifts@when the effective diffusion
coefficient is represented by Eq.~4.25!#. Consequently, the
Kadomtsev-Pogutse or Rechester-Rosenbluth diffusion coef-
ficient is a good approximation for the effective diffusion
only in the limit of small drifts. At higher drift velocities
such thatD i

0@D lim
0 , the effective diffusion coefficient Eq.

~4.29! is practically independent of the collisional cross field
diffusivity x' and it is completely different from the driftless
one.

V. CONCLUSION

We have shown here that the presence of plasma flows
can determine a strong effect on collisional particle diffusion
in a stochastic magnetic field. It consists in a large amplifi-
cation of the diffusion coefficients. As an example, for
the usual experimental parameters of the tokamak plasma
~electron temperature of 1000 eV, density of 331019 m23,
B0>3 T, b>1024, li>1 m, l'>1022 m! a very small value
of the magnetic diffusion coefficient is obtained~Dm51028

m!. The parallel drift corresponding to the toroidal current
~with a typical density of 106 A/m2! has only a weak effect in
these conditions but it can become important at smaller den-
sities. However, a radial electric field of 2 kV/m determines
a perpendicular velocity, which leads, according to Eq.
~3.18!, to a rather strong diffusion coefficient of the order 0.2
m2/sec.

We have also shown that the cross field collisional diffu-

sivity has an important effect on the effective particle diffu-
sion only in the limit of small deterministic drifts where two
regimes for the diffusion coefficient are observed according
to the ratioLKP/LK , Eq. ~4.25!. They are, up to small correc-
tions determined by the average drifts, the well-known
Kadomtsev-Pogutse and Rechester-Rosenbluth diffusion co-
efficients. When the deterministic drifts are increased both
regimes evolve to the same diffusion coefficient which is
independent ofx' . In particular, a plasma in the Kadomtsev-
Pogutse regime which is characterized by a stochastic field
diffusion coefficient smaller than the collisional one could
be, in fact, in a highly anomalous regime if appropriate de-
terministic drifts are present. When the drifts are large
enough the Kadomtsev-Pogutse or Rechester-Rosenbluth dif-
fusion coefficients are not valid and must be replaced by the
drift induced diffusion coefficientD i

0(u' ,ui) @Eqs. ~3.14!–
~3.16! or the approximations~3.17!, ~3.18!#. For the example
considered in the preceding paragraph, the Rechester-
Rosenbluth model yields a diffusion coefficient of the order
0.01 m2/sec which is 20 times smaller than the perpendicular
drift induced diffusion coefficient.

The analytical expressions~3.14! and ~3.15! obtained for
the Lagrangian correlation of the stochastic velocity contain
all the transitory regimes which characterize both the sto-
chastic magnetic field and the collisional velocity of the par-
ticles. Consequently, it can be used for studying finite sto-
chastic regions and also stochastic boundaries such as
ergodic divertors in tokamak plasmas.
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