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M. Vlad,** F. Spineand?* J. H. Misguich! and R. Balesct
*Association Euratom-Commissariat’&nergie Atomique sur la Fusion, partement de Recherche sur la Fusion Contel@entre
d’Etudes de Cadarache,
13108 Saint-Paul-lez-Durance Cedex, France
2Association Euratom-Etat Belge sur la Fusion, Physique Statistique et Plasmas, CP 231, Unhibrsitée Bruxelles, Campus Plaine
Boulevard du Triomphe, 1050 Bruxelles, Belgium
(Received 18 December 1995; revised manuscript received 1 March 1996

The study of collisional test particle diffusion in stochastic magnetic fields is extended to include the effects
of the macroscopic flows of the plasnfdrifts). We show that a substantial amplification of the diffusion
coefficient can be obtained. This effect is produced by the combined action of the parallel collisional velocity
and of the average drifts. The perpendicular collisional velocity influences the effective diffusion only in the
limit of small average drifts[S1063-651X96)01807-1

PACS numbses): 52.25.Fi, 05.40tj, 52.25.Gj, 52.35.Ra

I. INTRODUCTION the diffusion coefficient so that they do not contribute to
explaining the anomalous transport. To our knowledge, there
The problem of collisional particle diffusion in stochastic are only the papers by Mynick and Krommgst], by Myra
magnetic fields, although not entirely solved, seems to band co-workerd 15,16, by Coronado, Vitela, and Akcasu
better understood at this moment. The early results of Re17], and recently by Isichenko and Diamofdi8] which
chester and Rosenbluffi] and Kadomtsev and PogutE2]  deal with this problem but only in the case of noncollisional
are now confirmed by more elaborated studs12 and by  particles(e.g., runaway electronsAll these results show an
numerical calculationg13]. The general result is that the attenuation of the diffusion due to deterministic drifts. Such
stochastization of the magnetic lines could provide a possiblgehavior appears when the Lagrangian two point correlation
explanation for the anomalous transport in magnetically conpf the stochastic velocity is a positive function at all times.
fined plasmas. In this context we present here a stud_y_of th@/e show here that in the doubly stochastic process, which
effects of the plasma flows on the transport coefficientSqetermines the evolution of the collisional particles in the
Such flows appear as deterministic drifts superposed on thgochastic magnetic field, the effect of the deterministic drifts
stochastic velocity which determines collisional particle mo-ijs more complex, precisely due to the fact that the Lagrang-
tion in a stochastic magnetic field. They can be produced byan, correlation function of the stochastic velocity has a nega-
an electric field perpendicular to the confining magneticijye tail. It determines an increase of the diffusion coefficient
field, by a current along it, by fast neutral beam injection,yith the drift velocity up to a maximum value which can be
etc. Such macroscopic plasma flows are commonly found ipnych larger than the driftless one. A similar peaking of the
experiments. We have obtained a nontrivial dependence Qfarticle diffusion coefficient was also obtained in Rigf9]
the effective particle diffusion coefficient on the determinis-from a qualitative analysis of the transport processes in the
tic drift velocity: first there is a strong increase of the diffu- ergodic divertors of tokamak devices.
sion which is followed, at higher values of the drift velocity, The present work belongs to a series of pag@g0—
by a reversed effect, the increase of the drift leading to thg 2 2qj which is devoted to various aspects of the magnetic
decay of the diffusion. This happens for drift velocities bothyrpylence. We use here the methods and some of the results
perpendicular and parallel to the main magnetic field, but iryptained in our previous papgr].
the case of a parallel drift the effect is superposed on the The text is organized as follows. The model is presented
diffusion determined by the average motion along magneti¢, sec. |I. It is a test particle approach based on Langevin-
field lines(which is linear in the velocity The effect of the type equations. The comparison with the kinetic approach
deterministic drifts is imp_o_rtant in all di_ffusio_n regimes. We has been discussed in RELO]. The diffusion coefficient as
have shown that the collisional cross field diffusivity has 3 function of the drift velocities is determined in Sec. Il for
a significant influence on the effective diffusion coefficient 5 7erg cross field collisional diffusivity. Next, in Sec. IV, the

only in the limit of small drift velocities; at higher values of jnflyence of the cross field collisional diffusivity is esti-
these velocities, the diffusion coefficient is practically inde-mated. The conclusions are summarized in Sec. V.

pendent ofy, .

This problem of average drifts was not much analyzed in
the literature. It was probably expected that the deterministic
drifts determine, as in several related problems, a decrease of

We consider the simplest geometry of the unperturbed
magnetic configuration consisting of a constant confining
*On leave of absence from the Institute of Atomic Physics, P.Omagnetic fieldB, (shearless slab modellhe particle trajec-
Box MG-7, Magurele, Bucharest, Romania. tories(in the Cartesian coordinates with thexis alongB),

Il. THE MODEL
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x(t)=(x(t),y(t),z(t)) are described by the following set of A(r) rféij —rir;
Langevin equations: Bij(r)=(bi(x+1)b;(x))= — [5ij B }
L L
dx, dz @7
T b(x) dt ty (+u, 2.1 The correlation functions correspond in the Fourier repre-

sentation to the wave number spectrum of the fluctuations of
dz the magnetic field components and Eg.7) is equivalent
rTin m(t)+uy, (2.20  with the following model for the latte(see Ref[7]):
(bik)bj(k))= (kT &; —kik;) A(k), (2.9
wherex, (t)=(x(t),y(t)), b=(b, (x),b,(x)) is the stochastic
perturbation of the magnetic field adimensionalized A(k)=(2m) "3\ 1 BPexp — N TKI— A EK3), (2.9
7(t), n (t) are the components of the stochastic collisional )
velocity parallel and, respectively, perpendicularBgand ~ Wherek, = VK +kj, k;=k;, and A(k) is the spectrum of the
u,, andu, =(0,u,) are deterministidaveragg components fluctuating potential?’(x). The factor contained in the paren-
of particle velocity(they axis was taken for simplicity along theses on the right-hand side of H@.8) accounts for the
the velocityu, ). Such deterministic motion can be produced,zero divergence of the stochastic magnetic field.
e.g., by a current a|on§o or, respective|y’ by an electric Even in the absence of the deterministic drifts the prOb'
field in thex axis direction(a radial electric field in tokamak lem of collisional particle evolution in a stochastic magnetic
p|asma$ The magnetic drifts Speciﬁc to tokamak Configura_ field is very Complicated and it was not possible to find until
tions (which cannot be introduced in this mogiélave been Nnow a simple and complete solution. We develop here a
extensively studied in Ref§14—16. simplified model which is valid for magnetic perturbations
Concerning the statistical properties of the random quanstch thate=pg(\/\,)<1 (quasilinear limii. In dealing with
tities we make the following reasonable assumptions. Théhis model, we first neglect the perpendicular collisional sto-
collisional velocity has zero average and is modeled byehastic velocity in Eq(2.1) [#,(t)=0] and show that the
Gaussian colored noise with the two time correlation func-Problem can be solved in these conditions. The diffusion
tion having different amp"tudes in the para||e| and perpen_CoefﬁCient is obtained as a function of the drift Ve|0Ciﬁ.q_S,
dicular directions: u, (Sec. Il)). Although the perpendicular collisional stochas-
tic velocity i, (t) entails a strong mathematical complication
(O ()= xyv exp—vt—t')=R,(t—t']), (2.3  ©f the problem which prevents the use of the method pre-
sented before, it is possible to make an approximate evalua-
tion of the effect of the perpendicular collisional diffusivity

(7L (D)7 ()=( (D)7} (t"))=x v exp(—v|t—1"]) on the effective diffusion coefficient. It is based on the cal-
=R, ([t—t']), 24 culation of the time of decorrelation induced by collisions
L)) @4 N
<7ﬁ(t)7ﬁ(t’)>=<m|(t)nﬁ(t’)>=<77n(t)ni(t’)>=0&2 5 lIl. DRIFT INDUCED DIFFUSION COEFFICIENT

Equationg2.1) and(2.2) determine the particle trajectory
wherew is the collision frequency of the plasma=V3/(2»)  x,(t) which is actually a function of two variables:
is the (classical parallel diffusion coefficient, X, (t)=x,(z(t),t), where the dependence anresults from
x.=(V21)/(202) is the collisional cross field diffusion co- the first term on the right-hand side of E@.1), the explicit
efficient, andVy is the thermal velocity. dependence on time from the last two terms, atd is the

For describing the stochastic magnetic field we introducesolution of Eq.(2.2).
the vector potential?’(x)e, in order to have the zero diver-  We consider in this sectioi, (t)=0 in Eq.(2.1). Conse-
gence condition ensure®.(x) is taken as a Gaussian random quently, the explicit dependence on time in the equation of
field, spatially homogeneous and isotropic in they) plane  motion is deterministic. We show here that this particular

with an Eulerian autocorrelation function modeled by problem can be solved in the quasilinear limit characterized
by a=B(\/\,)<1. The method is similar to that developed
2 r2 for the driftless case in our previous warK].
A(r)z(\lf(err)\I’(x)>=32>\fexp< - 2—;2— ﬁ) The mean square displacement of the trajectories in the
I L directioni, averaged over the fluctuating magnetic field in a

(2.6 given realization of the stochastic velocity(t), is calcu-

o ) lated as
Here, three characteristic parameters are defined: the parallel

correlation length\,, the perpendicular correlation length ([x, (t)—x, (0)—u, t]?),
A\, , and the dimensionless measure of the intensity of the
stochastic magnetic field. r, andr, =(r,,r,) are the com-
ponents of the distanaebetween the two points. The Eule-
rian autocorrelation function of the potentidi(x) deter-
mines the Eulerian correlations for the magnetic fieldwhere z(t) is considered as a given function of time),
component$7]: denotes the statistical average over the stochastic parameter

—ftfdtdtzui t t,),t;—t dz dz 3.1
=/, 1AL (2(ty) —2(ty),ty Z)d_tld_tz’ (3.1
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specified by the subscript, anﬂ# is the two point Lagrang- <1 (quasilinear limij, the nonlinearity cognsisting in the
ian correlation ofb; ,b; along particle trajectories. It is re- dependence ol; on the unknown functiong;* can be ne-
lated to the corresponding Eulerian correlatip in the  glected(as shown in Ref7]) and Eqs(3.5 and(3.6) reduce
well-known Corrsin approximatiof21] (valid in the quasi- to simple approximate expressions for the Lagrangian corre-

linear limit a<<1): lations of the magnetic field components:
242 242
LiH (2D =(bi(x.(£,1),0)b;(0,0))s . 5 utt u‘t
j ] L — 2 _ = - -
) L (L,t)=pex 2)\5 ex 2)\f )\f ,
= J i f dx dy Bj(x,y,0) Y(X,Y:{b). (3.2 3.7
§2 uitZ
Here,y(x,Y;{,t) is the probability density for a displacement [,;;(g,t) =,82exp< — ﬁ) exr{ o (3.8
x,y of the trajectories which advance a distarice a time I L

interval t [{=z(t)]. This probability is estimated as the av-
erage over the stochastic magnetic field of the Difdanc-
tion (see Ref[7]):

In these conditions, the average over the second random
parameter, the collisional parallel velocig(t) can be easily
performed. The mean square displacement averaged over the

V(XY 40 = (8= X(L,D))3Y—y(L, 1))y, (3.3 two stochastic functions becomes

Using the Fourier representation of thdunctions and per- Ti(0)=([x, (1) =X, (0) = u, t]")p

forming the average of the resulting exponential by means of ‘

the cumulant metho¢second cumulaitone obtains :f f dtdt,L, (t,—tp;u,uy), (3.9
0 I

y(x,y:4t)

, , WhereLUi(r;u” ,U,) is the Lagrangian two point correlation
1 iex Xy Y — U D 2X(y —u Dl of v;=b;(dz/dt), the perpendicular velocity determined by
2 \/a q ' particle motion alongerturbedmagnetic lines:

(3.4 L, (ty—to;uy,u;)
where Iij(glt):<[XL(t)_XL(O)_uLt]i[XL(t)_XL(O)_ULt]j>b dz dz
and q(4,t) =1y~ 2. The functionsl;; depend on the ={ L (z(ty) —2(ty) 1 —ty) TR (3.10
Lagrangian correlationﬂ:iujl according to Eq(3.1) (and to 1Rl
the similar equations for the other components of the trajeCrpege correlations can be calculated by performing a Fourier

tory). Corrsin approximatiort3.2) and the Eulerian correla- . u .
tions (2.7) determine a rather complicated set of coupledeXpanS'on OfL;;" in the z argument, which leads to an aver-
age of the type

nonlinear integral equations fc(Ei“jL(g,t). The equation for
L;Ji, is homogeneous and ﬁ;(O,O)=BXy((-),O,O)=O, its so- N dz dz
lution shows that the cross correlation remains zero\ &Pl iK[Z(t)—z(t2)]} dt, dt,

L;‘i(g,t)=0. The other two equations become :

g_z) A (Jy—ult?) o u?t?
26y I 2J,

1 9 9

ZFgl@<eXp[—ik[Z(t1)—Z(tz)]}>u, (3.11

ci;(z.t>=ﬁzexp( -
(3.5 where the average on the right-hand side is determined using
the cumulant theorenfsecond cumulaint After integration

" , 2 )\j uftz over the Fourier conjugate argument, one gets

1 — - - _ -
ny(g,t) Beex 2)\5 W ex 2\]y , (3.6 . i}

. L 1 ’ e d !J'L )
whereJ;=\2+1;,i=x,y. v (T3t UL 27((2A(7))) f_m ELi (@D
We note that the perpendicular drift motion alopdhas 5 5

two important consequences. It destroys the gyrotropic prop- wexd — ({—u7) R,()— (1)
erty of the problem leading to a dissymmetry betwa&eand 2((22(7)» 0 <<zz( 7)))

y directions. Consequently, the Lagrangian correlations lose
the symmetry property found in Reff7] and the diffusion lus () ({—uy7)
coefficient becomes &iagona) tensorial quantity. On the ()
other hand, wheru, #0 it is not possible to perform the

change of variables,— &,=2z(t,), n=1,2 in the integrals in Here,((z%(7)) is the second cumulant aft), the solution of
Eq.(3.1) and thusl;; are not only functions of=z(t) andt  EQ. (2.2

but they depend on the whole trajecta(y,), t; € [0,t]. Due

to this fact, Eqs(3.5) and(3.6) are much more complicated (7)) = 2(vT) X (3.13
than their driftless limifEq. (30) in Ref.[7]]. However, for v ' ’

2

(3.12
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FIG. 1. The diffusion coefficient®, and D, resulting from FIG. 2. The diffusion coefficient resulting from Eq€3.14)—
Eqs.(3.14_)—(23.16), as functions oti, for u;=0. The normalization (3.1 for u,=0 and for several values of the parameter
constant is8%; and y=2. ¥=(\m¢g/\)% The normalization constant \fv.

where y(x) =x—1+exp(-|x|) and o(7=3d((z’(7)))/d7  modify the basic correlatioh %(t) whose “equilibrium” is
=x[1—-exp(—v7)]. completely destroyed. We note that the deterministic drifts
Equation(3.12 shows that the stochastic parallel velocity have a strong effect: they determine a Gaussian decay of the
7(t) has a very strong effect: the shape of the Lagrangiagorrelation and also some factors which modify its shape,
correlation of the produck;=b;(dz/dt) is completely dif- producing even the change of its sign. Consequently, the
ferent from that of the correlation of each fac:(aﬂri‘:L and, diffusion coefficients defined as
respectively R)). At the limit »,,,—0 (i.e., dz/dt=u,) the
correlation ofv; is simplyci‘}(uut,t)uf and has the bell-like Di(y, ,ui):j dt Lvi(t;ull ) (3.16
shape ofﬁﬁk The parallel collisional velocityy, transforms 0
it into a more complicated function having a negative tail.
When the motion is purely stochastie,=0 andu, =0), the

posmr\]/e and thT hegative hpart;, h(fg)fLUi(t,uﬁ_:_O, ‘WL, and consequently the diffusion coefficierid and D,
[D%):fs%v;te@ug)irg?sasn% ttﬁl; t n?e alnussth(Lr;l feoedilscrl)le;éelfn Zeirt‘&_egend on three _dimenszion_less parametars=u N ),
o\t~ _ = d U =u/(\p), and y=2x/(\f )= (\pnr/N)?. The first two pa-
I'(t) has a subdiffusive behavior. The subdiffusive behaviorameters describe the influence of the deterministic drifts
of T'(t) is thus due to collisions. They produce a randomwhose effect appears to be dependent on the characteristics
motion of the particles along magnetic lines which determineof the two stochastic processellision frequency and, re-
a nonzero probability density for the presence of the particlegpectively, correlation lengths of the stochastic magnetic
at any time moment in the correlated zone of the stochastifield). The third parametey describes the influence of the
magnetic field. If a deterministic component of the motioncollisions.
exists(u;#0 oru, #0), the particles move out of the corre-  The effects of the deterministic drifts on particle diffusion
lated zone(they decorrelate from the magnetic linesnd  in a stochastic magnetic field are presented in Figs. 1-4
I'(t) becomes diffusive. In mathematical terms, this processvhich show that both parallel and perpendicular determinis-
results in the fact that the deterministic drifts destroy thetic drifts produce first the transition from the subdiffusive
“equilibrium” between the positive and negative parts of the (D =0) to a diffusive regime and then a strong increase of the
Lagrangian correlatioh J(t) transforming it into a function diffusion followed by a slower decay. The amplification of
with a positive time integral.

With the approximationg3.7) and (3.8) for LL:i, Eq.

are rather complicated functions of the drift velocities.
Equations(3.14 and (3.15 show that the correlations

(3.12 yields D, ' ' ' '
B\ ¢? ot)?
Lvy(t;Uu:UL):T[Rn_Tﬁ‘+U|2 1+|_|$‘ !
uft?  u?t? a1
Xexp——=— ==, . 0.5 [y
212 2£% (319
242
: . i 0
Lux(t,U”,UL):Luy(t,uH,UL) 1_)\_2 y (315)
1
where | 2=\ 2+((z?)). This equation shows that boin, FIG. 3. The diffusion coefficienD, (normalized withg\?v)

and u, introduce additional time factors which strongly for u,=0 and for several values of the paramejer
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Comparing Figs. 2 and 3 one can observe that a stronger
= amplification of the diffusion coefficient can be produced
when the drift velocity is parallel to the main magnetic field.

The combined effect of the two drifts);#0 andu, #0) is
more complicated. For instance, the case<\y is illus-
trated in Fig. 4. One can see that at small, u, strongly
modifies the effective diffusion but at large it is practi-
cally independent ofi, .

The Lagrangian correlation function8.14) and (3.195
represent the main result of this section. They determine the
mean square displacement of the particles at any time and
the running diffusion coefficienfnot only their asymptotic,
diffusive limits). Thus it is possible to study particle behav-

FIG. 4. The diffusion coefficienD, in the presence of both jor not only in large(infinite) size stochastic magnetic fields
drifts: u;=0.2 (long dashed ling u;=0.1 (dashed ling andu;=0  \yhere the asymptotic approximation applies but also in sto-
(continuous ling chastic fields with a smaller space extension. Actually, the

S ] _experimental configurations belong usually to the latter case
the diffusion is a complex effect determined by the combi-gince the stochastic domains of the magnetic field appear
nation of the two stochastic processbsand 7) involved in - petween undestroyed magnetic surfaces or chains of islands.
particle evolution with the deterministic drifts. Figure 1 pre- oy such a domain having an extension alangadia) axis
sents the dependence of the diffusion coefficient obtainegs lengthR, the time of particle confinement can be evalu-
from Eqgs.(3.14—(3.16 onu, (for u;=0). One can note that ated from the equation
the perpendicular drift produces a stronger influence in the
“radial” direction: D, has a faster variation withi, than
Dy. e . o (X*(te))py=R?, (3.19

At u, =0, the diffusion is the same in the two directions
[Dy(u;,0)=Dy(u;,0)=D(u)]. The effect ofu, is qualita-
tively similar to that ofu, but it is superposed on the linear here(x(t)),, is calculated according to E¢8.9) using the
contribution which represents the diffusion in the absence ofgrrelation function3.15. In the special case of edge plas-
mas, the parallel drift velocities are much smaller than thgjue to the fact that the stochastic magnetic lines are con-

thermal velocitiesy <V, i.e.,ui<\'y and thus the interest- nected to the wall. This process determines a second equa-
ing range foru, is well before the maximum oD (u;). The  tjon:

diffusion coefficient can be estimated analytically in this
limit as

2(te))=((Z2(tx))) + Ut2=Z3(R), 3.2
D(u;,00=5D,u, for U<vy, (3.17) (U ={Z )+ i (R (320

where D= \@/28%\, is the diffusion coefficient of the \yhere the lengttz(R) of the stochastic magnetic lines is
magnetic lines. The diffusion is thus practically independenkyaluated from the diffusion equation P2,.Z(R)=R?] and
of y and it is five times greater than the collisionless one((z%(t))) is given in Eq.(3.13. The time of particle confine-
[which is D"(u;)=Dpu,, as will be checked below, Eq. ment in the case of edge plasmas is the minimum of the
(321)] Figure 2 also illustrates the influence of the colli- solutions of Eqs(319) and(32@ The practica| method for
sional parallel diffusivityy; (represented by the paramet@r  sych evaluations is to calculate?(t)),, and(z2(t)) for the
on the effective diffusion coefficient: fOfy:O, the well- actual parameters of the p|asma and to deterrn_j@aphi-
known collisionless limitD"™ is recovered and, ay in- cally using the plot of these functions. Depending on the
creases, the nonlinear contribution determined by the conkpecific parameters and on the sRef the stochastic zone,
bined effect of andu, becomes more and more important. yarious regimes are obtained: laminar or ergodic for the
The stochastic collisional velocity, has a similar effect magnetic field, free streaming or collisional for particles.
whenu;=0 andu, #0 (see Fig. 3 at y=0 the diffusion when the particles are very rapidly logt&X,/u, ,\, /u,),
coefficient is zerdthe collisionless limit in this cagdor any  the effect of the drifts is negligible. But the opposite condi-
u, . Itis only when bothy andu, are different from zero tion (t,=\/u;,\,/u,) is possible in stochastic boundary

that a diffusion process appears and becomes strongeisas |ayers(especially for the ionsand the drifts can modify the
increasing. The diffusion coefficient can be estimated anagransport properties in this case also.

lytically from Egs. (3.14—(3.16 in the limit of small per- We finally note that for collisionless particlesy=0)
pendicular drifts: whose trajectories are determined by a single stochastic pro-
1o — cess_b, the effects of the (_jeterministit_: drifts are different._
D(0u,)=D (i @) —D.V (U_l) In this case, the Lagrangian correlations of the stochastic
yRamEL M A, miT 27 velocity vi=bju; [Egs. (3.14 and (3.15] reduce to

Ei”ii(§= th,t)uf and using Eq(3.16) the following diffusion
Dy(0u;)=1.5D(0u,) for u, <. (3.18  coefficients are obtained:
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DUy DUy where the index 0 in Eq4.3) indicates the correlation df;
DQCZ—uMm, DSCZ—uMz—m- with d,b; . The functionsl,,L,,L; are given by
vl R
Uy Uy , 22\ A (3y—utt?) u?t2
(3.2 LS =Bexp — 53| — jamez — ©XP ~ 53|
I x Yy y
They have a different dependence on the drift velocities: a (4.6)
continuous increase with, and a continuous decrease with ) 4 2.2
Us- Lo(80)=38%xd — —,—FM exgl —
2e 2\ ) 3727 23, )
IV. THE EFFECT OF THE COLLISIONAL (4.7

CROSS FIELD DIFFUSION

, 22\ M(33i-6ult2d +utt?)
In the preceding section we have studied collisional par- £3({,t)=p ex;{ - ﬁ) JI2972
ticle diffusion in stochastic magnetic fields in the presence of I x 7Y
average drifts, neglecting the small perpendicular component uftz
7, (t) of the stochastic velocity determined by collisions. We X exp( - Z_Jy) : (4.9

evaluate here the influence &f (t) on the effective diffu-
sion coefficient. The problem cannot be solved using thgypare . have the same definition as in E8.5) and(3.6).
method (_)f Sec. Il since, even in the quasmnea}r limit, it is |, the quasilinear limit(a=g\/\,<1), J;~\? and Egs.
not possible to express, (t;u;,u,) (the Lagrangian corre- (4 ¢)_(4.8) reduce to much simpler expressions:

lation of the velocityv;=b;#, on particle trajectorigsas a

function of £;;* (£,t) (the Lagrangian correlation of the mag- B 2 uPt? u?t?

netic fluctuations on magnetic linesis was done in Eq. El(g't)zﬁex Sz )\t ) (4.9
(3.12. This difficult (unsolved problem can be avoided and

the effective diffusion coefficient can be estimated in the B2 2 uftz

quasilinear limit by using a method similar to that presented Lor({t)=3—~ ex;{ - —2) (4.10
in Ref.[7] for the driftless case. This is based on the calcu- A 2N 2N

lation of the time of collision induced decorrelation of the

2 2 4
particles from the magnetic lines. To this aim we determine . (LH)=3 B oxd — IS 3 uit? s uft? N uftt
the evolution of the moment&Ax;Ax;)y, |, i,j =X,y where slet)= N2 222 2\2 VYA
Ax;=x;(t)—x(t) represents the contribution due to the sto- (4.11

chastic collisional velocityn, [x;(t) is the trajectory for
7, #0 andx °(t) is the trajectory forp, =0]. Straightforward The set of equations for the moments becomes
calculations similar to those presented in Sec. Il of R€f.

lead, in the quasilinear and Markovian approximation, to a

d
e 2 _ 2 2
set of coupled linear equations for the moments averaged dt (AxDp1 1= 2A1(AX )b 1+ 2A5(Ay o1+ 2x (1),

overb and », whose coefficients are of the type (4.12
! kI dzdz . d 2 2 2
odT Lij(z(t) —z(7),t—17) drar bklI=xy, 4.1 &(Ay Yor1= 2A2(AX5 1+ 2A1(AY ) pr+2x. (1),
(4.13

where L (z(t) — z(7),t— ) is the Lagrangian correlation of
db; and g,b; on particle trajectories with 7, =0
(dbi=ab;/9x,). The fact that all the Lagrangian arguments
are the trajectorieg’(t) allows us to estimate these correla-
tions as in the preceding section. The Eulerian correlations ofthereA;(t) = [ td £;(z(t)—z(7),t— 7)(dZ/d7)(dZ/dt) and
the gradients of the magnetic field can be deduced from Eqy, (t)=/td7 R, (7). With the initial conditionAx;(0)=0,
(2.7). Then, using Corrsin factorizatiof8.2) one finds that the solution of Eqs(4.12—(4.14 is

the table of the correlations simplifies considerably in the
Lagrangian frame: part of them are identically zero and the

d
at (AXAY)p = —4A(AXAY)p, (4.14

A3 1/2 t
2 - s
others can be expressed in terms of three functions: (Ax(1)p, =| 1+ A, fodthL(tl)
XX pYY_— _ pXY__ _ XY t
Lx=Lyy Ly Lyx=La(41), (4.2) xexp{Zf (A + \/FAg,)dﬁ}, (4.15
ty
— Y XY XX Ol _
ﬁii’—ﬁﬁ_ﬁx_ﬁi;_ﬁij_o' 4.3 AL\ Y2
Ay2(t))y, =| 1+| == f dtyx. (t
,C;);,:,Cz(é’,t), (44) < y ( )>bL A3 } 0 lXL( l)

L= La(L,), (4.9 XeXF{ZJ't(Al"‘ \/A2A3)d‘9}v (4.1
t
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(AX()AY(t))p,=0, (4.17

797

where the first line was obtained fag =\, Vx;/x. <Lk
which corresponds to the Kadomtsev-Pogutse collisional re-

where we have retained, for simplicity, only the fastest growgime and the second line fot,p>L, i.e., for the

ing terms. This solution is valid for small time, so that

(AXP(0)p, =AE .
The relative trajectory dispersidiqgs.(4.15 and(4.16)]

Rechester-Rosenbluth regirﬁbKE)\f/(4\/w/2,32)\H) is the
exponentiation length of the magnetic line& detailed clas-
sification of the collisional regimes of particle diffusion in

has still to be averaged over the stochastic collisional velocstochastic magnetic fields is presented in Ret].

ity n,. Due to the complicated dependence gnand z(t)

appearing in Eqs4.15 and(4.16), it is not possible to cal-

The dispersion of the trajectories can be written as the
sum

culate this average, except in the limit of small perpendicular

drift velocity u, where we can neglect the anisotropy intro-

duced byu, and approximaté\,=A;=3A;. In this case

(AX2(1))p, =(AY?(1))p,

t t
szj dtm(tl)exp(sj Al(a)de). (4.19
0 ty

(P()ori=([X°(O 1o+ (AXPD)pry, (423
where the first term contains the effect of the drifts fpr=0
and the second the influence of the collisional veloajty.
This decomposition induces a similar relationship for the dif-
fusion coefficient:D;=D°+ D¢ whereD ¢ is the contribu-
tion of the perpendicular collisional diffusivity. The diffu-

With this approximation, the calculations follow the samesion coefficient can be estimated@s~\ 2/(2t,) where the

steps as in our previous studig0] concerning collision in-

decorrelation time is determined from the equation

duced decorrelation in a time-dependent stochastic magnetic

field. #, is contained only in the argument of the exponential
in Eq. (4.18 and the average ovej; can be calculated using

the cumulant metho@second cumulaint The first cumulant
is estimated as

8 [t ty
Cl(u”,ui;t,t1)=)\—2jtd0f0 doiL, (6—61;u;,u,)
1

€L

8D%u,,u
G (4.19
)\L

using Egs.(4.9), (3.10, (3.19, and the asymptoti¢large
t,t;) approximation. HereD Q(UH,UL) is the drift induced

diffusion coefficient foryp, =0 (determined in the preceding
section. Long but straightforward calculations showed that

(DX(te) 2o+ (AXP(te) Yo =1 (4.24
Straightforward analysis of this equation shows that for
small drifts the second term of E@.24) is dominant and the
decorrelation is produced mainly by collisions. The decorre-
lation time ty is estimated from{ Ax?(tg))y, ;=A? and the
random walk evaluation of the diffusion coefficient yields

V2[4(7—2)B%a’y;+D %y, +D° KP regime
A(m—2)B?a’y,+D°
C~ 0 .
= A(7—2) BPa?y, +D", RR regime.
In|4 —MM— =~
X1
(4.25

the drifts determine the decay of the second cumulant whiclFor such small drift°(u, ,u, ) is small and it represents in

is smaller than the first except in the limit =0 andu,=0
where it is dominant and can be approximated by

Cz(UHZO,UL =0,t,tl)
ML) = (Z(t)))]

=32(m—2)B* N

. (4.20

The average over, of the exponential in Eq4.18 becomes

t ty dz dz
ex SLdaJO dalﬁi(z(a)—z(el),a—el)@d—al |

8a
=ex E(t_tl) ,

wherea=D 2(u, ,u, ) +4(7—2) By, . Finally, we have ob-
tained the following evaluation of the average ovgof Eq.
(4.18 (see Ref[20]):

(4.21

8ay,
%

)\EXL 8a .
1a ex Et, RR regime

t2

,  KP regime

(AXZ())py = (4.22

Eq. (4.29 a small correction to the driftless value which is
recovered atu;=u, =0 as the well-known Kadomtsev-
Pogutse or Rechester-Rosenbluth diffusion coefficient. Equa-
tion (4.29 is valid for small drift velocities such that the first
term in Eq.(4.24 can be neglected, i.e., fol®t,<\? . This
condition reads

2x,., KP regime

D%(uy,u, )<Dp,= { A(m—2)B%a’y,,

RR regime.
(4.26

It corresponds to perpendicular drift velocities:

4
1
— (—pL) —, KP regime
u, <u;j= BNy (4.27)
16a*y, RR regime

or alternatively to parallel drift velocities:

1 2

g(lg—;) ,  KP regime
u<um= : (4.29

£ @y, RR regime.
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Equationg3.17) and(3.8) were used for the estimaté$.27)  sivity has an important effect on the effective particle diffu-
and(4.28 and thus they are valid only "™ andu|™ are in  sion only in the limit of small deterministic drifts where two
the validity range for those estimatds™<y and Uﬁ"“ regimes for the diffusion coefficient are observed according
<y). to the ratioL«p/L g , EQ.(4.25. They are, up to small correc-

At larger drift velocities wherD >D?{. | the first term of  tions determined by the average drifts, the well-known
Eq. (4.24 becomes dominant compared to the second on&adomtsev-Pogutse and Rechester-Rosenbluth diffusion co-
and the influence of the perpendicular collisional diffusivity efficients. When the deterministic drifts are increased both
x. on the effective diffusion coefficient is negligible. Conse- regimes evolve to the same diffusion coefficient which is
guently, the effective diffusion coefficient can be approxi-independent ok, . In particular, a plasma in the Kadomtsev-

mated by the result obtained in the preceding section: Pogutse regime which is characterized by a stochastic field
0 diffusion coefficient smaller than the collisional one could
Di(u, ,up=Dj(u.,u). (4.29  be, in fact, in a highly anomalous regime if appropriate de-

_ . terministic drifts are present. When the drifts are large
In conclusion, we have shown that the perpendicular cOmgnq,gh the Kadomtsev-Pogutse or Rechester-Rosenbluth dif-
ponent of the collisional stochastic velocify is important  fsjon coefficients are not valid and must be replaced by the
only in the limit of small driftsfwhen the effective diffusion drift induced diffusion coefficiend io(ul uy) [Egs.(3.14—

coefficient is represented by E{.25]. Consequently, the 3.16 or the approximationé3.17), (3.18]. For the example
Kadomtsev-Pogutse or Rechester-Rosenbluth diffusion Coe{:'onsidered in the preceding paragraph, the Rechester-
ficient is a good approximation for the effective diffusion posenpluth model yields a diffusion coefficient of the order

only in the limit of small drifts. At higher drift velocities 91 n¥/sec which is 20 times smaller than the perpendicular
such thatD !>Dp,,, the effective diffusion coefficient Eq. it induced diffusion coefficient.

(4.29 is practically independent of the collisional cross field  The analytical expression8.14) and (3.1 obtained for

diffusivity x, and itis completely different from the driftless e | agrangian correlation of the stochastic velocity contain
one. all the transitory regimes which characterize both the sto-
chastic magnetic field and the collisional velocity of the par-
V. CONCLUSION ticles. Consequently, it can be used for studying finite sto-

Wghastic regions and also stochastic boundaries such as

We have shown here that the presence of plasma flo . )
ergodic divertors in tokamak plasmas.

can determine a strong effect on collisional particle diffusion
in a stochastic magnetic field. It consists in a large amplifi-
cation of the diffusion coefficients. As an example, for
the usual experimental parameters of the tokamak plasma M.V. and F.S. are grateful for the warm hospitality of the
(electron temperature of 1000 eV, density of B'® m~3, members of the Department of Controlled Fusion Research
Bo=3T, B=10"% N=1m, \,=10"2m) a very small value of CE-Cadarache and of the Department of Statistical Phys-
of the magnetic diffusion coefficient is obtainéd,,=10"% ics and Plasmas of the Universitébre de Bruxelles. They
m). The parallel drift corresponding to the toroidal currentacknowledge the financial support for their stay at CE-
(with a typical density of 10A/m?) has only a weak effectin Cadarache from the “Commissariat’&nergie Atomique”
these conditions but it can become important at smaller derand from the “Ministee des Affaires Etranges de France.”
sities. However, a radial electric field of 2 kV/m determinesThis work was partly prepared during the stay of M.V. and
a perpendicular velocity, which leads, according to Eq.F.S. at UniversitdLibre de Bruxelles where they have been
(3.18, to a rather strong diffusion coefficient of the order 0.2 supported financially by the Association Euratom-Belgian
m?/sec. State for Fusion and by a grant from the European Commu-
We have also shown that the cross field collisional diffu-nities in the frame of the PECO Program.
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